Niccolò Fontana (1500-1557), matemático italiano apodado Tartaglia (el tartamudo). Huérfano y sin medios materiales para proveerse una instrucción, llegó a ser uno de los principales matemáticos del siglo XVI.
Se especializó en geometría y matemáticas y llegó a ser profesor de matemáticas en las ciudades de Viena, Mantua y Venecia.

La primera persona que se conoce resolvió un tipo de ecuación de tercer grado es Scipione del Ferro, pero no informó a nadie sobre esto. Al parecer no consideraba completa la solución, ya que podían aparecer lo que hoy día llamamos números complejos, además de no considerar mas que un tipo de ecuación con coeficientes positivos. En su lecho de muerte, del Ferro confió el descubrimiento parcial a su alumno Antonio Maria Fiore, quién comenzó a jactarse de poder resolver ecuaciones de tercer grado y en 1535 desafió a Tartaglia que al mismo tiempo estaba estudiando el mismo tipo de ecuaciones, pero descubrió más casos que los que podía resolver Fiore.

Ferro habría enseñado a Fiore a resolver sólo uno de los casos. En este duelo Tartaglia demostró el 13 de febrero de 1535 saber como resolver ambos casos, sin explicar como lo hacía. En menos de dos horas resolvió los problemas presentados por Fiore, quien no pudo responder satisfactoriamente a los problemas planteados por Tartagila. Este triunfo hizo famoso a Tartaglia.

En 1556 publica su obra Trattato, donde se refiere al descubrimiento del triángulo aritmético y al desarrollo del binomio, aunque estos temas ya eran conocidos en años anteriores. Hoy el triángulo aritmético lleva su nombre Tartaglia o el de Pascal, que escribió sobre el tema en 1654.

Link: ugr

Anuncios